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INTRODUCTION 

Vitamin A deficiency is still a worldwide problem, causing blind­

ness in an estimated 50 to 100 thousand children annually (Olson, 1978). 

Various efforts have been and are being made by individual governments 

and international bodies to combat the problem of vitamin A deficiency. 

One such effort is the 6 monthly administration of large doses of vitamin 

A to children living in areas of endemic vitamin A deficiency in Indo­

china . 

Empirical research has been active in numerous areas. Physiological, 

effects of long or short term deprivations as well as excesses of vitamin 

A in experimental subjects are being studied. Concurrently, there has 

been renewed interest in the transport and metabolism of vitamin A 

following the isolation of a specific carrier protein for retinol. With 

the exception of the role of vitamin A in the visual process, the search 

still continues for specific biochemical reactions that are catalyzed by 

vitamin A in one form or another. Other areas of active research involve 

vitamin A precursors. Although it has been more than half a century 

since carotenoids were identified as precursors of vitamin A, information 

concerning the exact mechanism of the conversion process is still incom­

plete. Still further directions for research have been indicated by the 

increasing tendency of the general public towards megavitamin intakes. 

Megadoses of vitamins, their precursors and analogs are used increasingly 

for therapeutic purposes. For example, the use of retinoids for the 

prevention and therapy of certain types of cancer is being encouraged 

(Sporn and Newton, 1979). Large doses of B-carotene have been recommended 
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to help decrease sensitivity to sunlight in patients suffering from 

erythropoietic protoporphyria (Mathews-Roth et al., 1970). 

The need for basic research into vitamin A function, metabolism, 

and conversion from precursors is still great in order to provide answers 

to long standing questions. Furthermore, investigations into the effects 

of megavitamin doses are becoming more important as increasing numbers 

of people are exposed to megavitamin therapy. Vitamins C and E are some 

of the most abused micronutrients by self-prescribing megavitamin enthu­

siasts. Megavitamin C is promoted as a prevention and cure for the 

common cold. Vitamin E, on the other hand, is believed to slow down 

aging and improve virility in men. Although a small amount of vitamin E 

is essential for adequate reproductive performance in rats, there is as 

yet no scientific proof of the utility of the vitamin in reproductive 

disorders in humans. Since there is no appreciable storage of water 

soluble vitamins in the body, megadoses of vitamin C pose little danger. 

Vitamin E, on the other hand, is fat soluble and very well stored in 

various tissues in the body but has proven harmless in large doses to 

experimental subjects. However, Arnrich (1978) has clearly shown that 

high doses (50 x requirement) of dl-a-tocopheryl acetate (aT) severely 

depressed hepatic deposition of retinol, when 6-carotene was the sole 

source of vitamin A in the diets of young vitamin A depleted rats. 

Several postulations could be made about high aT intakes and vitamin A 

metabolism as follows: 

(1) High aX interferes with 6-carotene absorption. 

(2) High aT interferes with the enzymatic processes of conversion 

of 6-carotene to vitamin A. 



www.manaraa.com

3 

(3) High otT enhances degradation and excretion of retinol 

stores in the body. 

The present study was designed to examine in detail the nature of 

the interaction between vitamin E and g-carotene. Specifically the 

effects of (1) high tissue concentrations of vitamin E, and (2) the 

physical presence of excess tocopherol on the short term conversion of 

B-carotene to vitamin A were examined both in vivo and in vitro. The 

formation of retinol metabolites from ̂ ^C-g-carotene was used as a 

measure of this extent of B-carotene conversion to vitamin A. Hepatic 

deposition of vitamin A derived from g-carotene during 28 or 56 day 

feeding of carotene was measured to assess the overall effect of excess 

aT on the utilization of the pro-vitamin. 
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REVIEW OF LITERATURE 

Vitamin A 

With the exception of carotenoids, compounds possessing the biologi­

cal activity of retinol (ROL) are referred to as vitamin A. More 

recently, the term retinoids is being used to represent both the natural 

and synthetic analogs of vitamin A, with or without biological activity 

(Goodman, 1979). 

In the diet, vitamin A occurs mainly as retinyl esters (RE) or 

carotenoids. Retinyl esters are hydrolyzed in the lumen of the small 

intestines by enzymes associated with the mucosal brush border. The 

newly released ROL or any ROL ingested as such is absorbed into the 

mucosal cell where it is esterified mainly as retinyl palmitate and to a 

lesser degree as stearate (Huang and Goodman, 1965; Goodman et al., 

1966a; Ganguly, 1969). The retinyl esters (RE) are incorporated into 

chylomicrons and travel, via lymph, into the systemic circulation. The 

chylomicrons are partially cleared of triglycerides by extrahepatic 

tissues. The remnant particles containing cholesterol, RE and other 

lipids, are cleared from the blood by the liver (Redgrave, 1970). In 

the liver, hydrolysis of the RE and re-esterification (mainly as retinyl 

palmitate) occur. The newly formed RE are stored associated with lipid 

droplets (Lawrence et al., 1966). There has always been speculation as 

to the exact location(s) of vitamin A stores in the liver. Current 

research seems to implicate hepatic parenchymal cells under normal 

intakes of vitamin A, while perisinusoidal cells (also called Ito cells) 
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are thought to accommodate large doses of vitamin A (DeLuca et al., 

1977). There is a strong suggestion that vitamin A is mainly stored as 

RE in 'vitamin A enriched globules (VAG)', which are contained in 'hepatic 

lipocytes' (Olson and Gunning, 1980). 

Vitamin A is transported from the liver to extrahepatic tissues as 

free ROL bound to a carrier protein referred to as plasma retinol binding 

protein (RBP) (Kanai et al., 1968). Retinol binding protein has been 

isolated from the sera of various species including man, pig, cattle, 

dog, rabbit, monkey, chicken and rat. Since RBP is synthesized in the 

liver and catabolized in the kidney, plasma levels of RBP fall during 

liver disease and are elevated in patients with chronic renal diseases 

(Smith and Goodman, 1971). 

The rough endoplasmic reticulum of the hepatocyte appears to be the 

major subcellular location for RBP but, so far, no particular organelle 

has been identified as the specific location for RBP synthesis, or for 

the synthesis of the RBP-ROL complex. According to Smith and Goodman 

(1979), most of the RBP in liver is associated with microsomes. These 

investigators postulate that, although the Golgi apparatus is involved 

in the secretion of RBP from the liver, it is not the major location for 

RBP in either normal or vitamin A deficient rats. 

Human RBP has been characterized as a single polypeptide (M.W. 

=21,000), with electrophoretic mobility. Each polypeptide chain has 

a binding site for one molecule of ROL. Holo-RBP (RBP with ROL bound to 

it) travels in serum associated with prealbumin in a 1:1 molar ratio. 

Although both proteins are synthesized in the liver, it is believed that 
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they are synthesized and secreted independently and that they associate 

with each other in the blood (Navab et al., 1977). The affinity between 

RBP and prealbumin is reduced after RBP gives up its ROL to peripheral 

tissues and becomes apo-RBP. Because RBP is a small protein, free apo-

RBP in the blood is quickly removed from circulation by glomerular 

filtration unless the kidneys are diseased and their filtration function 

is impaired. 

Dowling and Wald (1960) have conclusively shown that serum ROL 

concentrations do not necessarily reflect the body's reserve of vitamin 

A because serum ROL concentration is maintained within a narrow range at 

the expense of hepatic ROL. This observation has been corroborated by 

many workers including Underwood et al. (1979). There have been several 

studies related to factors which control or regulate the release of 

vitamin A from the liver. Parameters which have been used include: 

serum ROL and RBP concentrations, and functional tests such as dark 

adaptation. Evidence for the essentiality of RBP to carry ROL out 

of the liver is well established. Any physiological condition that 

affects RBP synthesis or release would therefore indirectly affect serum 

ROL levels. At any one time, serum vitamin A could exist as ROL in 

holo-RBP and also RE incorporated into chylomicrons or lipoprotein 

fractions on their way to the liver. Serum vitamin A measured post 

prandially, is therefore partly dependent upon mobilization of ROL 

stores from the liver and also on RE of recent dietary origin. Most 

research on the subject has been focused on ROL mobilization from the 

liver. 
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Vahlquist et al. (1978) identified patients with liver malfunction 

and low plasma RBP concentrations (<20 yg/ml) who had impaired dark 

adaptation. Vitamin A therapy of these patients neither raised serum 

RBP concentrations nor improved dark adaptation. The deduction was 

made that the vitamin A deficiency observed in these patients was 

secondary to an inability to mobilize ROL from their diseased livers. 

In a series of papers. Smith and coworkers (1971, 1972, 1973) have 

shown that protein-calorie malnutrition, cystic fibrosis of the pancreas, 

some diseases of liver, kidneys and thyroid, all adversely affect RBP 

metabolism. In patients with acute hepatitis, serum ROL and RBP concen­

trations were initially low, but increased steadily in the absence of 

vitamin A supplementation as their condition improved. In contrast, 

patients with chronic renal disease showed elevated amounts of serum RBP 

and ROL reflecting the inability of their kidneys to clear RBP from the 

circulation. The authors also noted that low serum RBP and ROL could be 

raised in children suffering from protein-calorie malnutrition by supple­

menting their diets with protein and calories without supplemental 

vitamin A. Many other investigators, including Venkataswamy et al. 

(1977), provided further evidence in support of the contention that 

adequacy of dietary protein is essential for the synthesis of RBP, and 

in turn for normal transport of ROL out of the liver. 

Smith and Goodman (1979) have shown that liver RBP concentrations 

rose while values for serum RBP fell during the development of vitamin A 

deficiency in rats. The observation indicated that RBP was secreted 

from the liver only when attached to ROL. Upon repletion of vitamin A 
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deficient rats with ROL, holo-RBP was rapidly secreted from the liver 

into the blood stream. Since the ROL-stimulated secretion of RBP from 

liver was not blocked by inhibitors of protein synthesis, it was sug­

gested that the newly released RBP did not reflect de novo synthesis of 

RBP induced by ROL. 

A different idea about serum ROL regulation was put forward by 

Underwood and coworkers (1979). Based on short and long term administra­

tion of retinoic acid (RA) to vitamin A deficient or sufficient rats, 

the authors concluded that the release of vitamin A stores from liver 

into blood is dependent on the need of extra hepatic tissues for ROL. 

This hypothesis was based on the finding that plasma ROL concentration 

was reduced when rats were given RA. It was suggested that RA fulfilled 

some of the rats' requirement for vitamin A in extrahepatic tissue, thus 

reducing the demand for ROL. If, as the authors hypothesized, in the 

presence of adequate liver stores of vitamin A, plasma ROL concentrations 

reflect the need for ROL by extrahepatic tissue, one might expect that 

physiological states which increase or decrease requirements for vitamin 

A would lead to noticeable increases or decreases, respectively, in 

serum ROL. If this hypothesis cannot be proven correct it could mean 

that RA depresses serum ROL for reasons other than those stated by the 

authors-

The manner of delivery of vitamin A to target tissues has been 

clarified with the discovery of specific receptor sites for RBP on these 

cells. It is believed that holo-RBP is relieved of its ROL at these 

sites. Cellular retinol-binding protein (CRBP) and cellular retinoic 
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acid-binding proteins (CRABP) are soluble proteins with high and specific 

binding affinities for ROL and RA, respectively. These two groups of 

proteins have been isolated from various tissues including rat testis 

cytosol (Ross and Goodman, 1979). It is hypothesized that the final 

fate of vitamin A in some target cells is dependent upon these types of 

two binding proteins acting as carriers from the cell membrane to the 

interior organelles. 

Exactly how and in what forms vitamin A functions metabolically is 

still not known. The problem is being pursued with renewed vigor by 

researchers. The role of vitamin A in vision is by far the best under­

stood and there is no attempt to review the subject here. 

Beta-Carotene 

Well over four hundred naturally occurring carotenoids have been 

identified and characterized by food chemists interested in using 

carotenoids as food additives and colorants. Chemical structure is of 

primary importance in determining the biopotency of a carotenoid. To be 

biologically active, a carotenoid must have at least one unsubstituted 

S-ionone ring with a polyene side chain attached to it, while the other 

end of the compound should have at least an eleven carbon polyene frag­

ment. There can be some modifications in the basic structure with vary­

ing effects on biopotency (Bauernfeind, 1978). Carotenoids vary greatly 

in their biological activity. Beta-apo-12'-carotenal, from alfalfa, for 

example, is 20 percent more active than g-carotene, while homo-6-caro-

tene and 5,6-epoxy-6-carotene have only 20 percent of the activity of 
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g-carotene. At doses barely large enough to result in ROL deposits in 

liver, g-carotene is considered only half as potent as ROL (Moore, 

1957). At higher doses, the biopotency of g-carotene is less than 50 

percent of the potency of ROL (Kamath et al., 1972). 

Since carotenoids are naturally found inside plant cellular mater­

ials, their availability to animals is dependent on the digestibility 

of the plant material. Various factors have been shown to affect the 

efficiency of utilization of carotenoids by animals and man. Most 

investigators have used the response of animals to g-carotene administra­

tion. Some of the parameters commonly monitored were: growth, hepatic 

and renal retinol concentrations, amelioration of vitamin A deficiency 

symptoms and, sometimes, fecal excretion of intact g-carotene. Some 

animal species such as cattle, dog, and man are able to absorb g-caro-

tene intact while others such as sheep, goat and rat have an effective 

barrier to the absorption of g-carotene (Huang and Goodman, 1965). 

Moore (1957) has reviewed information concerning factors influencing 

biological availability of carotenoids. Factors such as the functional 

integrity of the small intestine, digestibility of the plant material in 

which the carotenoid is encased, availability of fat (type and amount) 

in the diet, and the presence or absence of bile salts have all been 

shown to affect the utilization of carotenoids by animals. The absence 

of dietary fat or adequate bile flow both severely depress g-carotene 

utilization. With respect to dietary fat, the degree of saturation of 

the fat could be of importance as evidenced by growth depression in 

vitamins A and E depleted rats fed linoleates or linolenates and small 
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amounts of g-carotene daily (Sherman, 1941). This inhibition of g-

carotene utilization could be due to oxidative damage to the 6-carotene 

in the intestinal lumen in the absence of antioxidants since oxidative 

destruction of g-carotene in vitro is speeded up by the presence of 

polyunsaturated lipids (Sherman, 1942). Park (1975) has, however, shown 

to the contrary that increasing the vitamin E content of the diet of 

rats did not diminish the depression of g-carotene utilization due to 

dietary polyunsaturated lipids (PUFA). If the depression in g-carotene 

utilization by PUFA were solely due to oxidative destruction of the g-

carotene, addition of increasing amounts of vitamin E should have ameli­

orated the problem. As this was not the case in Park's (1975) study, it 

can be concluded that PUFA depresses g-carotene utilization by means 

other than increased oxidative destruction of g-carotene. 

The protein content of diets is important in the efficiency of 

conversion of carotene to vitamin A, thus rats fed low protein diets are 

unable to take full advantage of the g-carotene in their diet (Gronowska-

Senger and Wolf, 1970; Kamath et al., 1972; Kamath and Amrich, 1973). 

Even for in vitro assays of the enzyme responsible for the conversion of 

g-carotene to vitamin A, prefeeding high protein diets to rats before 

using them for an assay proved beneficial (Stoecker, 1970). Protein 

appears to interact with g-carotene at the intestinal level both 

directly and indirectly. 

Site of conversion of g-carotene 

After establishing the fact that g-carotene and some other caroten-

oids were precursors of vitamin A in animals, several researchers tried 
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to elucidate the site(s) and later the mechanism of the conversion of g-

carotene to vitamin A. 

In rats, orally administered 3-carotene resulted in an increase in 

hepatic ROL, while gl-carotene as such was undetectable in rat liver 24 

hours after dosing (Mehl and Deuel, 1946). Parenteral or intrasplenic 

administration of g-carotene led to large g-carotene deposits in the 

liver. Based on growth rate data and related parameters, the authors 

concluded that rats were unable to derive maximum benefit from hepatic 

g-carotene as a source of vitamin A. The same group of researchers 

(Mattson, Mehl and Deuel, 1947; Wiese, Mehl and Deuel, 1947) established 

by both in vivo and in vitro experiments with rats that the small intes­

tine was the major site for the conversion of 6-carotene to vitamin A. 

This finding led to several studies intended to by-pass the small intes­

tine by injecting g-carotene mixtures. Contrary to the data obtained by 

Mehl and Deuel (1946), different investigators have shown that g-carotene, 

injected in an aqueous medium containing suitable surfactants, was 

optimally utilized by various animal species including rats (Bieri and 

Sandman, 1951, Eaton et al., 1951; Tomarelli et al., 1946). Furthermore, 

Bieri and Pollard (1954) had evidence for a limited extent of conversion 

of g-carotene to vitamin A even after ligation of the bile duct, enter-

ectomy, nephrectomy, and partial hepatectomy in rats. These authors 

concluded that sites other than the small intestines had the ability to 

convert g-carotene to vitamin A. Recognition of the existence of entero-

hepatic circulation and the presence of hepatic g-carotene-15,15'-

dioxygenase (Olson and Lakshmanan, 1970) help to confirm these early 
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findings by Bieri and Pollard (1954). 

It has been determined that the intestinal mucosa is capable of 

synthesizing more vitamin A from precursors than is required for growth 

and maintenance (Thompson et al., 1950). The amount of 8-carotene con­

verted to vitamin A, however, is apparently dose dependent up to a point 

of saturation of the enzyme system (Olson, 1961). 

Biosynthesis of vitamin A 

As stated earlier, g-carotene is converted to vitamin A primarily 

in the intestinal mucosa. The proximal two-thirds of the rat's small 

intestine is most active in the conversion of g-carotene to vitamin A, 

while the distal third has little activity (Olson, 1961; Stoecker, 

1970). Two enzymes are involved in the conversion process. The first 

is known as g-carotene-15,15'-dioxygenase. It has been isolated and 

partially purified by many investigators including Goodman and fellow 

workers (1967). 

Beta—carotene-15,15'-dioxygenase is a soluble enzyme that functions 

in vitro at a narrow pH range of 7.5 to 8.0. It requires molecular 

oxygen, a detergent, and a lipid to function at maximum capacity in 

vitro but the detergent and lipid requirements are nonspecific. The 

enzyme is stimulated by thiols, inhibited by sulfhydryl inhibitors and 

also by chelating agents. Goodman et al. (1966b) determined that the 

hydrogens attached to the central carbons of the g-carotene molecule are 

completely retained during cleavage of the molecule. From these and 

other characteristics, it was concluded that the enzyme cleaves g-caro­

tene at the central double bond probably by a dioxygenase mechanism 
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yielding two molecules of retinal (RAL). The enzyme has been partially 

purified and characterized from hog and rabbit intestine as well as rat 

liver (Olson and Hayaishi, (1965). 

The second enzyme, retinaldehyde reductase, catalyzes the reduction 

of RAL to ROL. This enzyme is also a soluble mucosal enzyme with a 

molecular weight of 60,000-80,000. It also has been isolated and par­

tially purified from rat liver (Zachman and Olson, 1961). The enzyme 

has a requirement for NADPH or NADH and seems to be a relatively non­

specific aldehyde reductase for the reduction of short and medium chain 

aldehydes (Fidge and Goodman, 1968). The newly formed ROL is quickly 

esterified mostly as retinyl palmitate. The fate of this new RE is the 

same as that of dietary RE. 

Vitamin E 

The term vitamin E is generic and refers to a series of fat soluble 

tocols and tocotrienols of which d-a-tocopherol is the most active. In 

most tests, the biopotency of vitamin E is assessed by the response of 

deficient animals to vitamin E intake. Parameters frequently used to 

ascertain vitamin E deficiency are: rat testes degeneration, fetal 

resorption, uterine color, muscular dystrophy, exudative diathesis, 

encephalomalacia and in vitro hemolysis of erythrocytes to oxidizing 

agents such as dialuric acid or hydrogen peroxide. The specific lesions 

are species dependent. If a-tocopherol is considered 100 percent active 

in vivo, then B, Y, and ô-tocopherols should be 40, 10, and 1 percent 

active, respectively (McLaughlin and Weihrauch, 1979). Ranking of the 
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antioxidant properties of tocopherols is in reverse to their biological 

activity; ô-tocopherol is a much more potent antioxidant than a-tocopher-

ol. The reductions in biopotencies of the various tocopherols relative 

to d-a-tocopherol are based on decreased absorption and relatively rapid 

excretion (Bieri, 1976). 

Food sources of vitamin E are widespread. Since animals do not 

synthesize the vitamin, the amounts contained in any animal tissue are 

influenced by diet. Generally, only small to moderate amounts of vitamin 

E are found in animal tissues. Alpha tocopherol tends to predominate in 

animal tissue but a diet high in foods containing y-tocopherols would 

change this predominance. 

Metabolism and function of tocopherols 

Vitamin E absorption is poor and dose dependent. Estimates ranged 

from less than 10 percent when milligram amounts were fed to about 50 

percent when microgram amounts were fed to rats (Losowsky et al., 

1972). Fecal excretion, however, did not correlate with liver storage 

data. For example, dietary medium chain triglycerides (MCTG) favored 

vitamin E absorption and cholestyramine depressed absorption rate while 

liver storage of vitamin E was lower in rats fed MCTG compared to those 

fed cholestyramine. This discrepancy may be due to the usual inaccur­

acies inherent in estimating absorption based on fecal excretion and 

liver storage. Furthermore, liver is not the major storage site of 

vitamin E- In man absorption of small doses was estimated at 20 to 30 

percent when lymphatic cannulation procedures were employed (Losowsky 
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et al., 1972). Based on the limited data available, it appears that the 

absorption of large amounts of vitamin E is limited relative to vitamin 

A. Adam and Korner (1968) observed that the appearance of vitamin A in 

the blood stream was twice as fast as that of vitamin E after an oral 

dose. 

Alpha-tocopherol is transported in close association with plasma 

cholesterol and total lipids (Bjornson et al., 1976) and stored mainly 

in adipose tissue (Bieri, 1972). According to data from depletion 

studies, tissues other than adipose appeared to have a labile and a 

non-labile pool of a-tocopherol. The relative non-labile pool of a-

tocopherol may represent a-tocopherol in cellular membranes (Molenaar et 

al., 1973). 

Although cellular vitamin E appears to be closely associated with 

membranes, including mitochondrial (Csallany and Draper, 1960), a variety 

of enzymes related to the respiratory chain were unaffected by vitamin E 

status. This suggested that vitamin E is not directly involved in the 

electron transport mechanism (Green, 1972). 

The function of vitamin E at the molecular level remains a subject 

of active research and controversy. Many water soluble vitamins are co-

factors in enzymatic reactions but so far investigations into various 

metabolic steps or pathways affected by vitamin E deficiency have failed 

to reveal any reaction that is specifically a-tocopherol dependent. 

Vitamin E is believed to play a two-fold role in the body. The 

role of a-tocopherol is generally attributed to its antioxidant proper­

ties and secondly, to specific physiological actions for which other 
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antioxidants cannot be substituted. Literature generated by researchers 

studying vitamin E action has been reviewed periodically (Green, 1969; 

Green and Bunyan, 1969; Molenaar, 1972; Bieri, 1976; Diplock, 1978). 

The antioxidant theory of vitamin E action was proposed by Tappel 

(1962). According to this hypothesis, random, free radical-catalyzed 

peroxidation of polyunsaturated lipids is a continual biological process. 

The peroxidation products are damaging to cellular and intracellular 

structures, certain enzymes and other labile intracellular components. 

The biological role of vitamin E is to inhibit this peroxidation process. 

In the absence of vitamin E, the peroxidation process goes on uninhib­

ited. Finally, membranes are damaged with a resultant sequelae of 

pathological conditions commonly associated with vitamin E deficiency. 

In their reviews. Green (1969) and Green and Bunyan (1969) questioned 

Tappel's hypothesis based on the following grounds: 

1) Inability to isolate (conclusively at the time) lipid perox­

ides of endogenous origin. 

2) Lack of increase in tissue lipid peroxides with progressive 

depletion of body vitamin E, or with increase in dietary PUFA, 

or significant decreases in tissue lipid peroxides upon 

vitamin E administration. 

3) Inability to exacerbate damage to oxidizable components of 

intracellular structures, such as lysosomes, by increased PUFA 

in diets of vitamin E deficient animals. 

4) Lack of evidence concerning a generalized loss of PUFA in 

vitamin E deficient animals. 



www.manaraa.com

18 

Diplock (1978) generally agreed with Green and Bunyan (1969) and 

further pointed out the inability to demonstrate any acceleration in 

rate of loss of (^^C)-labelled tocopherol in nutritional situations 

known to lead to vitamin and/or selenium deficiency. 

For several years the search for vitamin E function had been hampered 

by its apparent interaction with selenium. The discovery that gluta­

thione peroxidase (GSH-px) is a selenium containing enzyme (Rotruck et al. 

1973) which uses lipid peroxides as substrates has helped to resolve the 

confusion. This has also brought new credibility to parts of Tappel's 

hypothesis. If lipid peroxides are formed in vivo, two mechanisms 

appear to be available, theoretically, for their immediate discharge 

(Diplock, 1978). First, vitamin E could be involved in separate but 

complimentary reactions aimed at breaking a chain reaction involving 

formation of lipid peroxy radicals in membranes. The use of new method­

ology for measuring lipid peroxidation, namely, measurement of ethane 

and pentane evolution, has enabled Tappel (1980) to show that induced 

lipid peroxidation increased in vitamin E deficient rats compared to 

those on moderate or adequate vitamin E intakes. Secondly, vitamin E is 

believed to act as an antioxidant in the stabilization of membranes by 

maintaining the PUFA status of these membranes (Diplock, 1978). Maggio 

et al. (1977) demonstrated that vitamin E tended to associate with model 

systems containing PUFA. This observation, coupled with the knowledge 

that membranes tend to be high in PUFA lends further credibility to the 

notion that vitamin E plays an important role in the maintenance of 

membrane integrity. 
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Interactions of Vitamins A and E 

A relationship between vitamins A and E has been recognized since 

the early 1940s. The nature of the relationship and the specific role 

of each vitamin has been difficult to ascertain. 

Using doubly depleted rats, Hickman et al. (1944) found that vita­

min E enhanced the growth promoting power of vitamin A. In addition, 

the vitamin A depletion period and the survival time, after vitamin A 

supplementation had ceased, were both increased in vitamin E supplemented 

compared to vitamin E deficient young rats. Similarly, Harrill et al. 

(1965) and Ames (1969, 1974) noted that addition of vitamin E to the 

vitamin A supplement of vitamin E deficient rats led to a dramatic 

increase in hepatic stores of vitamin A. Lemley et al. (1947) also 

observed that the synergistic effects of small amounts of both vitamins 

on rat growth was somewhat diminished when the two vitamins were fed 

separately. When animals were not deficient in either vitamin, small 

amounts of both did not appear to produce measurable effects. However, 

with high doses of both vitamins, interactions are readily demonstrable. 

At toxic doses of vitamin A, vitamin E has been shown to alleviate symp­

toms of hypervitaminosis A. Symptoms such as teratogenicity (Soliman, 

1972) and growth depression in rats (Jenkins and Mitchell, 1975), mortal­

ity in chicks (McCuaig and Motzok, 1970), have been significantly allevi­

ated in the presence of high amounts of vitamin E. Some authors (Irving, 

1958; Pudelkiewicz et al., 1964; Combs and Scott, 1974) have shown that 

high doses of vitamin A proved detrimental to vitamin E utilization as 

measured by depression in vitamin E stores, or appearance of vitamin E 
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deficiency symptoms in animals receiving little or no vitamin E. In 

contrast. Green and others (1967) failed to observe a significant effect 

of relatively high doses of vitamin A on vitamin E utilization when 

14 
( C) «-tocopherol was given by intramuscular injection. 

The mechanism of the interaction between vitamins A and E has been 

difficult to elucidate. In chicks, high doses of vitamin A interfered 

with vitamin E absorption, as measured by appearance of tritium labeled 

a-tocopherol in serum (Combs, 1976). This effect was prominent only 

when the vitamin A was given as an oral supplement but not when the 

vitamin was mixed into the diet and consumed gradually over time. Few 

of the experiments cited have been designed to physically separate the 

administration of the two vitamins. Thus, it is difficult to distinguish 

between gut interactions and systemic interactions. It is probable that 

vitamin E acts to protect vitamin A against oxidative damage when the 

two vitamins are inside the gut lumen. Although vitamin E absorption is 

limited, it is unlikely that high doses of vitamin E interfere with the 

absorption of moderate doses of vitamin A. This is illustrated by 

Buckingham's (1974) observation that hepatic ROL storage was essentially 

the same when rats were fed daily 1 or 50 mg aT with equal amounts of 

retinyl acetate for 28 days. 

In the antioxidant theory referred to earlier, Tappel (1962) assumed 

that oxygen-labile compounds such as vitamin A were co-oxidizable sub­

strates and vitamin E was protecting them in vivo. This explanation of 

the mechanism of interaction of vitamin A and E has been severely criti­

cized by Green et al. (1967). In addition to an extensive review of the 
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literature, these investigators reported 11 experiments, designed mostly 

to stress vitamin E status and its effect on vitamin A status in experi­

mental animals. Vitamin E had a slightly depressing effect on the rate 

of depletion of hepatic vitamin A stores; otherwise, the authors could 

not find any increase in ROL utilization when vitamin E status was 

stressed by PUFA. The onset of encephalomalacia in vitamin E deficient 

chicks was not speeded up by administering moderately high doses of 

vitamin A- From their own data and others reviewed. Green and colleagues 

(1967) concluded that the antioxidant theory did not adequately explain 

vitamin A and E interactions in vivo. In view of recent information 

about the relationship of vitamin E and selenium through GSH-px, it 

might prove fruitful to repeat some of these earlier experiments with 

highly purified diets and a strict monitoring of selenium and vitamin E 

intakes. It is possible that under experimental conditions that would 

otherwise stress vitamin E, GSH-px activity might increase to compensate 

for the stress. 

Vitamin E and g-carotene 

Following the observation (Moore, 1940) that vitamin E enhanced 

liver storage of vitamin A from retinol or g-carotene in doubly depleted 

rats, investigations into the role of vitamin E in the metabolism of g-

carotene and also preformed vitamin A became very active. Based on both 

in vivo and in vitro studies, investigators have concluded that vitamin 

E had a beneficial effect (Quackenbush et al., 1942; Herbert and Morgan, 

1953), no effect (Burns et al., 1951; Bieri, 1955) or a detrimental 
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effect (Swick and Bauman, 1951; McGillivary and Worker, 1957; Buckingham, 

1974) on the conversion of 3—carotene to vitamin A. Parameters explored 

were: rate of growth of animals on suboptimal intakes of g-carotene, or 

storage of ROL in liver or in liver plus kidney. Upon closer scrutiny, 

it appears that vitamin E was beneficial to the utilization of B-carotene 

and even of preformed vitamin A provided comparisons were made between 

vitamin E deficient and sufficient status. The response was especially 

striking if the animals were previously depleted of both vitamins and 

resupplementation involved suboptimal amounts of both vitamins. Large 

doses of vitamin E have consistently been shown to be detrimental to g-

carotene utilization even when enough g-carotene was being fed to result 

in appreciable amounts of liver stores of vitamin A (Park, 1975). At 

very low doses of g-carotene, the amounts of vitamin E necessary to 

depress vitamin A storage were correspondingly low also. When the daily 

g-carotene dose to young vitamin A depleted rats was around 1 pg, up to 

1 mg of vitamin E per day did not show any significant adverse effect on 

rat growth while 2 mg or more of vitamin E per day proved detrimental 

(Harris et al., 1944; Burns et al., 1951). Upon raising the g-carotene 

dose to about 5 yg daily, Harris and coworkers (1944) reported that, up 

to 5 mg vitamin E no longer diminished g-carotene utilization for growth 

in rats. This apparent optimum ratio of vitamin E to g-carotene does 

not seem to hold at dose levels exceeding 5 mg vitamin E per day. 

The mode of action of vitamin E and g-carotene utilization proved 

elusive to ascertain. Although some of the questions have been answered 

the problem is still far from resolved. The antioxidant theory proposed 
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by Tappel (1962) and discussed earlier did not prove very helpful in the 

interpretation of 6-carotene and vitamin E interactions. It has been 

established experimentally, that carotenoids are subject to oxidative 

destruction in the intestinal lumen (Sherman, 1947; High et al., 1954). 

It is also known that antioxidants, both synthetic and natural, decrease 

the lability of carotenoids to oxygen (Milas, 1954). Therefore, the 

antioxidant effect of vitamin E operates most likely, under experimental 

conditions, where there is intragut interaction of vitamin E and caroten­

oids. This concept may be valid since vitamin E had to be administered 

simultaneously with g-carotene for optimal beneficial (Hickman et al., 

1942, 1944) or detrimental effects (McGillivary and Worker, 1958), 

especially when animals were doubly deficient. In addition, a-tocopherol 

appeared to be more active than ô-tocopherol in suppressing retinol 

storage from 6-carotene (Swick and Bauman, 1951), even though S-tocopherol 

is a more potent antioxidant than a-tocopherol (Dugan, 1976). 

Various antioxidants ranging from vitamin C (Mayfield and Roehm, 

1956) to synthetic antioxidants have been compared to vitamin E in their 

behavior towards B-carotene utilization, but results are difficult to 

interpret. High and coworkers (1951, 1952, 1954 and 1956) compared 

effects of several antioxidants with those of vitamin E on B-carotene 

utilization. Among compounds tested were lutein, tert—butyl-hydroquinone, 

octyl-hydroquinone, 2,6,di-tert-butyl-4-methyl phenol and N,N'-diphenyl-

p-phenylenediamine (^DPPD). Whether used in small or large concentrations, 

all compounds behaved parallel to vitamin E in terms of B-carotene 

utilization. The only exception was DPPD which is less soluble in lipid 
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systems compared to the other antioxidants tested- Sherman (1942) found 

that catechol, hydroquinone and other antioxidants were as effective as 

vitamin E in stabilizing g-carotene in the presence of linoleate and 

linolenate esters in vitro. These antioxidants, however, were not as 

effective as vitamin E in promoting growth in rats fed•g-carotene in the 

above mentioned fatty acid esters. 

Whether a synthetic antioxidant shows any effect on g-carotene 

utilization by experimental animals is probably dependent on the choice 

of the antioxidant and the mode of administration of the antioxidant. 

Moreover, it is unclear whether synthetic antioxidants behave similarly 

to vitamin E in vivo. For example, Csallany and Draper (1960) found 

that the subcellular distribution of DPPD in rats differed from that of 

tocopherol; the former was found mainly in the supernatant of cell 

homogenates while the latter was associated with mitochondria and micro­

somes. It should be noted that there are three commonly used classes of 

synthetic fat-soluble antioxidants: phenols, amines, and aminophenols 

(Dugan, 1976). Alkyl substitution of the phenols at the ortho or para 

positions usually increases their potency as antioxidants. Functionally, 

the three classes are somewhat different. The phenolic antioxidants are 

free radical scavengers and are ideal for use with polyunsaturated 

lipids which tend to undergo autoxidation. They are low in toxicity, 

potency, and generate little color when used. The amines on the other 

hand are extremely potent, often toxic, and form intense colors when 

oxidized. They are especially useful in preventing heavy metal ion-

catalyzed lipid peroxidations (Dugan, 1976). 
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Structurally and functionally tocopherols are similar to phenolic 

antioxidants. Some antioxidants provide increased protection as their 

concentrations increase. Others have optimum levels, and are pro-

oxidant at high levels (Dugan, 1976). This behavior is more likely in 

antioxidants which function by being oxidized preferentially. Since 

tocopherols are potential free radical scavengers, it is unlikely that 

they turn prooxidant in high concentrations. Besides, vitamin E does 

not affect utilization of moderate doses of retinyl acetate in rats 

(Park, 1975). Hence the detrimental effects of high intakes of vitamin 

E on S-carotene utilization is probably not due to a direct pro-oxidant 

action on g-carotene. 
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PROCEDURE AND METHODS 

Animals 

Male albino rats of the Wistar strain bred in the Food and Nutri­

tion Department at Iowa State University were used in all experiments. 

The animals were obtained at weaning wherever prefeeding was indicated 

in the experimental design (Experiments 1A,B, 2, 3A,B and 6). In Experi­

ments 4 and 5 rats were taken from the stock colony when they weighed 

about 250 g. When prefeeding was indicated, weanling rats were assigned 

individually to suspended wire-mesh cages. Distilled water and feed 

were provided ad libitum, and the rats were weighed weekly. Litter 

mates were balanced in all groups. Cages were changed weekly, and water 

bottles were changed twice a week. The rats were kept in an environment 

controlled for temperature (approx. 23°) and humidity (45-55% R.H.). 

Lighting was restricted to a 12 hr light-dark cycle. 

Diets and Supplements 

Composition of the experimental diet used was kept constant through­

out this study with the exception of Experiment 2, where a commercial 

source of corn oil was substituted for tocopherol-stripped corn oil 

(Table 1). Vitamins were provided daily in separate cups. Rats con­

sumed these immediately after a 3-4 day learning period. Fat-soluble 

vitamins and g-carotene were dissolved in corn oil. The rats received 1 

ml of water-soluble vitamin mixture (Table 2) and 5 drops (approx. 125 

mg) of their appropriate fat soluble vitamin mixture daily. During the 

depletion phase, all rats received the basal vitamin A-free fat-soluble 
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Table 1. Diet composition 

Ingredients Percent by Weight 

Casein (vitamin free test)^ 22 

SCO^'^ 10 

Salt Mix^ 3.5 

Corn Starch^ 64.5 

^Teklad Diets, Madison, Wisconsin. 

^SCO = tocopherol-stripped corn oil. Substituted with commercial 
com oil (Mazola, Best Foods Division, Commercial Products Company, New 
York, N.Y.) in Experiment 2. 

"^Williams et al. (1968). 

^Clinton com processing Co., 1251 Beaver Channel, Clinton, la. 

vitamin mixture containing 50 yg vitamin 0.65 yg vitamin 

and 1 mg dl-a-tocopheryl acetate^ (ctT) daily. During the experimental 

2 
period, all-trans g-carotene was included in the daily vitamin dose, 

except in Experiment 2. Rats fed high aT received 50 mg oT per day 

during the experimental period while control rats continued to receive 1 

mg aT. 

Sigma Chemical Company, St. Louis, MO. 

2 
Eastman Kodak Co., Rochester, N.Y. 
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Table 2. Composition of water-soluble vitamin supplement in 1 ml of 20 
percent ethanol 

Vitamin Dosage/day, yg 

Biotin^ 2.0 

Calcium panthothenate^ 97.0 

Choline HCL^ 4.8 mg 

Folic Acid^ 20.0 

Inositol^ 2.4 mg 

Niacin^ 64.0 

Para-amino benzoic acid^ 97.0 

Pyridoxine HCl^ 20-0 

Riboflavin^ 39.0 

Thiamine HCl^ 20.0 

Vitamin 0.2 

^General Biochemicals, Inc., Chagrin Falls, Ohio. (Known as 
Teklad Test Diets, Madison, Wisconsin, since 1975). 

^Pharmaceuticals, Inc., Cleveland, Ohio. 

^Teklad Test Diets, Madison Wisconsin. 

^Grand Island Biological Company, Grand Island, N.Y. 

Experiment 1 

The purpose of Experiment 1 was to determine the effect of feeding 

excess aT daily on hepatic ROL storage (Fig. 1, lA) and on the ability 

of the intestinal mucosa of rats fed high aT to convert 6-carotene to 

vitamin A products (Fig. 1, IB). 
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FEEDING REGIMEN 
WEANLING RATS 

1 
7 DAYS DEPLETION 

/  REPLETION 
/ WITH ^ 

28 DAYS B-CAROTENE ^8 DA« 

1 MG AT 50 MG AT 

IN VIVO TEST IN VITRO TEST 
TEST MEAL 

1 
2.5 HOURS 

I 
INTRADUODENAL INJECTION 

WITH ' ' 'c -6-CAROTENE 

1 
1 HOUR 

i 
KILLING 

Hepatic ROL ̂  

HEXANE EXTRACTION OF GIT 

FRACTIONATION INTO: 

S-CAROTENE 
RETINYL ESTERS 
RETINOL 

i 
C ANALYSIS IN FRACTIONS 

KILLING 

>L 
MUCOSAL SCRAPINGS FOR 
ENZYME PREPARATION 
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WITH ' ' 'c-e -CAROTENE MIXTURE 

V 
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RETINOL 
RETINAL 

i 
C ANALYSIS IN FRACTIONS 

Figure 1. Experimental design 
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Twenty weanling rats were maintained on a vitamin A-free regimen 

for 7 days.. Previous tests had indicated that a depletion period of 7 

days was adequate to reduce hepatic stores of vitamin A to <5 yg/g. At 

the end of the depletion period, the rats were divided into two groups 

of 10 each. Litter mates were evenly matched between groups. Group I 

(control) received the basal diet and supplements plus 55 pg g-carotene 

daily, group II (50-aT group) received the same treatment but 50 instead 

of 1 mg aT. After 28 days the rats were fasted overnight. On the 

following morning they were fed 1 g basal diet plus their water soluble 

vitamins. Two and a half hours later, the rats were anesthesized with 

ether. An incision of approximately 2.5 cm was made in midventral 

14 
portion of the abdomen. A dose of 10 pg of freshly chromatographed C-

1 ? 
3-carotene (all-trans, 15-15' labelled with S.A. = 10 x 10 dpm/pg) was 

injected intraduodenally about 1.5 cm below the pylorus. The injection 

mixture contained 10 yg ^^C-B-carotene, 100 yl acetone, 100 pi Tween 20 

2 
(polyoxyethylene (20) sorbitan monolaurate), and 800 pi Krebs Ringers 

bicarbonate solution. The incision was closed with wound clips and the 

animal was returned to its cage. Animals recovered from anesthesia 

6 to 10 minutes after the start of the surgical procedure. One hour 

after the injection, the animal was reanesthesized with ether. Blood 

was drawn by heart puncture and left to coagulate at 4°. Serum was 

separated by centrifugation. The small intestine, (proximal 60 cm). 

Courtesy of Hoffman-La Roche, Basel, Switzerland. 

2 
Courtesy of Atlas Chemical Industries, Inc., Wilmington, 

Delaware. 
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stomach, and liver were removed and prepared for chemical analyses. A 

detailed description of the methods used is given by Stoecker (1970). 

However, the extraction procedure of the small intestine, as described 

by Stoecker, was modified. The lumen of the small intestine was not 

washed with saline but the small intestine was extracted with contents 

in situ. Figure 1 summarizes the design and procedure of Experiment 1. 

For purposes of clarity, data from the determination of hepatic ROL are 

14 
designated as lA, while data on C counts are referred to as IB. 

Experiment 2 

The purpose of Experiment 2 was the same as that for Experiment IB 

but instead of intraduodenal injections of B-carotene, crude enzyme 

preparations from the small intestine were incubated with B-carotene. 

Rats used in Experiment 2 had been prepared for another experiment 

designed to assess the depletion rate of relatively large hepatic stores 

of ROL. Thus, "pretreatment of rats in Experiment 2 was similar to that 

in Experiment 1 except for a few changes: (1) Rats in Experiment 2 did 

not consume 3-carotene during the experimental period but had adequate 

hepatic retinol reserves; (2) The source of dietary fat in Experiment 2 

was a commercial source of corn oil^ instead of tocopherol-stripped corn 

oil. The animals had received one large dose of approximately 1 mg 

retinyl acetate at the end of their 7-day depletion period. Following 

Mazola, Best Foods Division. Commercial Products Company, 

New York, N.Y. 
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a 7-day equilibration period, they were given vitamin A-free supplements 

with either 1 or 50 mg aT during the subsequent 28-day experimental 

period. At the end of the feeding period the rats were fasted overnight 

to ensure empty stomachs and relatively clean small intestines. 

Following the fast, rats received 1 g of basal diet to stimulate 

the digestive process. They were killed 2.5 hours later- The proximal 

60 cm of the small intestine was quickly removed and washed with cold iso­

tonic saline. The intestine was opened longitudinally, and the mucosa was 

scraped with a glass slide- The homogenized scrapings gave a crude prepar­

ation of g-carotene 15,15'-dioxygenase. The method of Goodman et al- (1967) 

modified by Stoecker and Arnrich (1973) was used for assay of the enzyme. 

Experiment 3 

The purpose of Experiment 3 was to provide additional data on 

hepatic ROL deposits (3A) and to study the distribution of radioactivity 

14 
from C-g-carotene in various tissues and excretory products- In Experi­

ment 3, 20 weanling rats were treated identically to rats in Experiment 

1. Daily 6-carotene supplement was 75 pg per rat. At the end of the 

28-day refeeding period, rats were fasted for 8 hours. At the end of 

the fast, each rat was given 20 yg of freshly chromatographed ^^C-6-

carotene (S.A. = 6 x 10 dpm/pg) by gavage. The 6-carotene emulsion was 

prepared as described for Experiment 1. Immediately after intubation, 

each rat received 3 g basal diet, which was consumed within 15 minutes. 

The animals were placed in individual stainless steel metabolism cages 

with provision for collection of urine and feces. Fourteen hours later 

the rats were killed. Blood was withdrawn by heart puncture and treated 
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as in Experiment 1. The bladder was drained of any remaining urine. 

The bottom of the metabolism cage was washed and the rinsings added to 

urine collections. The entire gastro-intestinal tract (GIT) was removed 

and divided into 2 portions. One portion consisted of stomach and small 

intestine. The remainder of the GIT was combined with fecal droppings 

and the composite was homogenized and extracted with hexane. Extraction 

procedures were identical to those used in Experiment 1. Livers and 

kidneys were removed and analyzed for radioactivity and ROL (liver only). 

Total radioactivity (from aqueous and solvent extracts) were determined 

in all samples collected. Hepatic ROL data are referred to as 3A. The 

14 
data on C counts are referred to as 3B. 

Experiment 4 

The purpose of Experiment 4 was to determine the effect and simul­

taneous presence of excess aT on 6-carotene conversion process in vivo. 

Experiment 4 was essentially a repeat of Experiment IB. Therefore, the 

7-day depletion and 28 day repletion periods were omitted. Rats weighing 

about 250 g, were obtained from the stock colony and assigned to two 

groups with litter mates in each group. Following an overnight fast, 

they were treated as indicated in Figure 1 (Part B). The composition of 

14 
the dose containing C-g-carotene used for intraduodenal injections is 

given in Table 3. 

An important modification in this experiment was that, in contrast 

to previous experiments, aT was included in the injection mixture. 

Since 10 yg 6-carotene represented 1/5^^ of the daily g-carotene dose in 

Experiment 1, the aT doses were also given at 1/5^^ of 1 and 50 mg. 
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Table 3. Composition of mixtures injected into rats in Experiment 4 

Groups 

Ingredients 4A 4B 

aT .2 mg 10 mg 

^^C-S-carotene^ 10 yg 10 ug 

Acetone 100 yl 100 yl 

Tween 20 100 ul 100 yl 

Sodium Glycocholate 12 yM 12 yM 

Krebs Ringers Solution 500 pi 500 yl 

a 3 
S.A. = 10 X 10 dpm/ug. Courtesy of Hoffman La Roche, Basil, 
Switzerland. 

respectively. After injection, treatment of the rats, tissue collection, 

and analysis were identical to those in experiment IB (Fig. 1). 

Experiment 5 

The purpose of Experiment 5 was the same as that for Experiment 4, 

but Experiment 5 was in vitro while 4 was in vivo. Experiment 5 was a 

repeat of Experiment 2, except that (1) prefeeding was omitted, and (2) 

the incubation mixture used in Experiment 5 contained aT in varying 

amounts. 

Two groups of 4 rats weighing approximately 250 g each were obtained 

from the stock colony. They were fasted overnight, given a test meal 

following the fast, and killed 2.5 hours later. Scrapings of the proxi­

mal 60 cm of the small intestine mucosa were combined from all four rats 
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to obtain a sizeable pool of homogeneous enzyme preparation. Beta-

carotene-15,15'-dioxygenase was assayed as in Experiment 2. The incuba­

tion mixture in Experiment 5 contained either 0.02 or 1.00 mg aT in 

addition to 1 ug ^^C-B-carotene. These amounts represented 1/50^^ of 

B-carotene and aT fed daily to control and 50-aT groups in Experiment 1. 

Experiment 6 

The main purpose of this experiment was to determine whether daily 

intakes of 50 mg aT for periods exceeding 28 days would have inhibitory 

effects on hepatic ROL storage similar to those accompanying a 28-day 

feeding period. Therefore, 20 weanling rats were depleted of vitamin A 

for 7 days as in Experiment 1. The rats were then kept on the experi­

mental regimen of 100 yg B-carotene and 1 or 50 mg aT daily for 56 days. 

At the end of the 8 week feeding period rats were killed. Livers were 

analyzed for ROL content. 

Summary of all experimental protocol is given in Table 4. 

Analytical Procedures 

All manipulations were carried out as rapidly as possible, in semi-

darkness using amber glassware and under nitrogen whenever possible. 

All tissues (except liver) were extracted and analyzed on the day rats 

were killed. Details of extraction and chromatography procedures for 

intestine and stomach were identical to those of Kotecheri (1967) as 

modified by Stoecker (1970). The following changes were made: 
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Table 4. Summary of experimental designs 

Experiment 
No. Pre-feeding No. Days Fed 

Hepatic ROL 
Assay 

Experimental 
Procedure Duration 

lA, IB 55 gg B-carotene 
+ 

1 or 50 mg aT 

28 Yes (lA) Intraduodenal 
injection of 
3-carotene (IB) 

1 hr 

3A, 3B 

Intubation of 
-1 mg vit. A. 
Start feeding 7 
days later 
1 or 50 mg aT 

75 ug 3-carotene 

1 or 50 mg aT 

28 No 

28 Yes (3A) 

In vitro enzyme, 40 min 
Incubation of 
B-carotene 

Intubation of 14 hrs 
3-carotene (3B) 

None No Intraduodenal 
injection of ^ C-
3-carotene + 0.2 
or 10 mg aT 

1 hr 

None No In vitro enzyme 
incubation of 
3-carotene +0.02 
or 1 mg aT 

40 mln 

100 ng 3-carotene 
+ 

1 or 50 mg aT 

56 Yes None None 
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(1) Intestinal contents were not flushed out before extraction (Experi­

ments IB, 3B, and 4), and liver extracts were not chromatographed for 

assay of ROL or radioactivity; (2) In the 6-carotene—15,15'-dioxygenase 

assays (Experiments 2 and 5), incubations lasted for 40 minutes instead 

of 30 minutes as used by Stoecker (1970). 

Retinol analysis 

Hepatic ROL was estimated by a modification of the method of Olson 

(1979). Estimation of ROL by correction of readings were not 

useful because at 280 nm, readings were too high for liver extracts from 

rats fed 50 mg aT. Hepatic ROL concentrations were estimated by the 

Carr-Price reaction using 30 percent TCA in anhydrous chloroform as 

suggested by Olson (1979). By using a flow through cell^ in a Beckman 

2 3 
D.U. spectrophotometer with a digital read out, it was possible to 

take reliable readings in less than 12 seconds after the reaction had 

been started. 

Liquid scintillation counting 

In Experiments 1 through 5, suitable aliquots of all solvent 

extracts were transferred into scintillation vials, evaporated to dry­

ness and made up to 10 ml with 7.5 percent butyl-P BD in toluene. 

^Precision Cells Inc., Hickville, N.Y. 

2 
Beckman Instruments Inc., Fullerton, Calif. 

3 
update Instruments Inc., Madison, Wis. 
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Samples were counted in an ambient temperature scintillation counter.^ 

It was unnecessary to correct for color quenching because carotene con­

tent of each scintillation vial was kept under 5 yg. Preliminary work, 

using internal standards, had shown that 10 ml of 7-5 percent butyl-PBD 

solution could take up to 10 pg 6-carotene before any significant quench-

2 
ing occurred. Aqueous extracts and urine were counted in Brays' 

solution. The external standard ratio method (Wang et al. 1975) was 

used for quench correction. 

Statistical analysis 

Data generated in all experiments were analyzed by computer using 

the generalized linear models procedure and F tests (Snedecor and 

Cochran, 1967). 

^Packard Tricarb Scintillation Spectrometer Model 2405. 

2 
New England Nuclear, Boston, Mass. 
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RESULTS AND DISCUSSION 

Data generated from each experiment were analyzed separately. How­

ever, groups of experiments will be discussed together whenever feasible. 

Even though all data were analyzed statistically, only significant 

differences (P ̂  .05) are marked by asterisks. 

Growth 

In all experiments, growth was measured by increase in weight. 

Mean initial weights and weights at 28 days of rats in Experiments 1, 3, 

and 6 are shown in Table 5. Final weights of rats in Experiment 6 are 

also shown in Table 5. In addition, diagrammatic representation of 

growth of rats in Experiment 1 is given in Figure 2. The data show that 

rats fed either 1 or 50 mg aT in Experiment 1 grew at similar rates 

(Table 5, Fig. 2). Mean initial weights for both groups were identical 

by design. The difference between mean final weights of 243 g for the 

controls and 248 g for the rats fed 50 mg ctT (50-aT group) was not 

statistically significant. The rats were still growing rapidly and at a 

constant rate. The decrease in growth rate, which is typical of maturing 

rats, had not yet occurred (Fig. 2). Hence, growth curves were still 

linear at the termination of Experiment 1. Also initial weights of rats 

in Experiment 3 were identical to initial weights in Experiments 1 

(Table 5). But at 28 days, rats in Experiment 3 weighed only 194 (con­

trols) and 206 g (for 50 aT group) compared to 243 g and 248 g, respec­

tively, for comparable groups in Experiment 1- This apparent slow-down 

of growth in Experiment 3 was due to intermittent disruptions in 



www.manaraa.com

Table 5. Mean values for body weight of vitamin A-depleted rats fed 3" 
of aT® for 28 or 56 days (Experiments lA, 3A and 6) 

-carotene and two levels 

Experiment 
No. 

aT/day 
mg 

No. of 
Days Fed 

Carotene/day 
ug 

Initial 
Weight 

Weight at 
28 days 

Weight at 
56 days 

lA 1 28 55 51 + 1^ 243 + 7 N.A. 

(10)C (10) 

lA 50 28 55 51 + 1 248 + 6 N.A. 

(10) (9) 

3A 1 28 75 50 + 1 194 + 7 N.A. 

(10) (10) 

3A 50 28 75 49 + 2 206 + 5 N.A. 

(10) (10) 

6 1 56 100 54 + 2 169 + 11 310 + 15 

(10) (10) (8) 

6 50 56 ICQ 53 + 2 174 + 8 323 + 9 

(10) (10) (8) 

^dl-a-tocopheryl acetate. 

^Mean + SEN. 

^ N .  
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Figure 2. Growth curves of vitamin A-depleted rats repleted 
with 55 vig 6-carotene and 1 or 50 mg dl-a-tocopheryl 
acetate daily for 28 days (Experiment 1) 
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temperature and humidity control during the progress of this experiment. 

In sp'ite of the slow growth rate of rats in Experiment 3, statistical 

analysis showed no significant difference between the final (28-day 

weights of both groups of rats in Experiment 3. Similarly, in Experiment 

6, growth of the 50-aT group was not significantly different from that 

of controls. The same technical problems, responsible for the reduced 

growth rate of rats in Experiment 3, were encountered during the progress 

of Experiment 6. Consequently, 28-day mean weights of rats in Experiment 

6 were only 169 g for controls and 174 g for the 50-aT group. Data from 

Table 5 and especially Figure 2 all suggest that in Experiments 1, 3, 

and 6, daily feeding of 50 mg aT to young, growing rats for 28 or 56 

days had no effect on growth rate. 

The effects of high doses of aT on rat growth have been investigated 

by other researchers with similar conclusions. Buckingham (1974) showed 

in one experiment that vitamin A-depleted rats refed B-carotene and 50 

mg aT daily for 28 days attained final weights that were 15 percent 

lower than controls. In the same experiment, the aT effect did not 

occur when vitamin A-depleted rats were fed retinyl acetate together 

with 50 mg aT daily for 28 days. Rats used by Buckingham had been on a 

vitamin A-free diet for 21 days prior to the start of the feeding regimen 

with excess aT. The slight growth depression observed could, therefore, 

have been secondary to vitamin A insufficiency due to the limited ability 

of the 50-aT group to convert g-carotene to vitamin A. It must be 

stressed, however, that in a subsequent experiment Buckingham (1974) 

could not confirm the earlier observation. Corrick (1969) showed 
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conclusively that daily administration of 400 lU or more of a-tocopher-

ol to growing rats significantly depressed growth. The evidence so far 

suggests, that in the presence of adequate amounts of all other nutrients, 

young growing rats can maintain their normal rate of growth on daily 

intakes of aT as high as 50X their requirement. This may or may not be 

valid for experiments lasting for several months. 

Hepatic Retinol 

Hepatic stores of ROL were determined at the end of Experiments lA 

and 3A to confirm previous results from this laboratory (Buckingham, 

1974; Park, 1975). In Experiment 6, hepatic ROL was determined mainly 

to investigate whether the effects of tocopherol seen in Experiments lA 

and 3A would persist when the experimental feeding period was prolonged 

to 56 days. 

The results of the three experiments indicate that with g-carotene 

as the sole source of vitamin A in the diets of young rats, simultaneous 

feeding of 50 mg aT daily resulted in marked decreases in hepatic ROL 

(Table 6). When feeding periods lasted for 28 days with a daily g-caro-

tene dose of 55 or 75 ug, mean total hepatic ROL in rats fed 50 mg aT 

were 4 and 7 yg in Experiments lA and 3A, respectively. These values 

represented only 4 and 7 percent of control values (P < .001). 

In Experiment 6, the daily dose of B-carotene per rat was 100 yg 

compared to 55 yg in Experiment 1 and 75 yg in Experiment 3. Weight 

gain in Experiment 6 was also slower than in Experiments lA and 3A, 

hence the metabolic need for ROL in Experiment 6 was presumably decreased. 
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Table 6. Mean hepatic vitamin A of vitamin A-depleted rats fed g-carotene and 1 or 50 mg aT^ for 
28 or 56 days (Experiments lA, 3A, and 6) 

Experiment 
No. 

aT/Day 
mg 

No. Days 
Fed 

Carotene/Day 
Wg 

Vit. A/Liver 
Pg 

Vit. A/Liver 
as % of Controls 

lA 

lA 

3A 

3A 

50 

50 

50 

28 

28 

28 

28 

56 

56 

55 

55 

75 

75 

100 

100 

92 + 11" 

(10)C 

4 + 2*** 

(9) 

106 + 16 

(5) 

7 + 2*** 

(7) 

560 + 56 

(10) 

63 + 10*** 

(9) 

Control 

Control 

Control 

11 

^dl-a-tocopheryl acetate. 

^Mean + SEM. 

^N. 

AAAgignificantly lower (P < 0.001) than controls fed 1 mg aT/day. 
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Thus, a combination of high B-carotene doses, slow growth rate and long 

feeding periods (56 days vs. 28 days) all led to relatively high hepatic 

ROL deposits in Experiment 6 as compared to values in Experiments lA and 

3A. However, the inhibiting effects of excess aT on hepatic ROL deposi­

tion was still persistent in Experiment 6 (Table 6) with deposits amount­

ing to 11 percent of controls. 

The results confirm findings of Amrich (1978) that high daily 

intakes of aT severely depressed hepatic deposition of ROL when B-caro­

tene was the sole source of vitamin A in the diet. In an attempt to 

explain this effect, the possibility that excessive amounts of aT may 

act as pro-oxidants have been ruled out by Buckingham (1974) and Park 

(1975). In their studies high aT intakes did not depress hepatic deposi­

tion of ROL when retinyl acetate was fed in place of g-carotene. Further­

more, fecal excretion of B-carotene nearly doubled in the 50-aT group 

compared to controls (Park, 1975). The lack of inhibitory effects of 

high aT on retinyl acetate utilization suggests that aT acts on processes 

which preceed or lead to the synthesis of ROL from B-carotene rather 

than on mechanisms related to the utilization of the newly synthesized 

ROL. 

The enzyme responsible for cleaving B-carotene into 2 molecules of 

RAL requires molecular oxygen (Goodman et al., 1967). Since vitamin E 

is an antioxidant, it could affect the conversion process by competing 

for available oxygen in the gut. High et al. (1951, 1952, 1953) and 

High (1954) have demonstrated that certain fat soluble antioxidants in 

large amounts behave like vitamin E by depressing hepatic stores of 
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vitamin A from 8-carotene. Similar to the action of vitamin E, these 

antioxidants did not affect the utilization of dietary vitamin A. 

The Effect of Prefeeding 50 mg ctT on Functional 

Changes in Small Intestinal Mucosa 

In vivo study (Experiment IB) 

In the experiments described so far, total hepatic ROL was measured 

after feeding a fixed amount of g-carotene to vitamin A depleted rats in 

the presence of high or low amounts of aT daily. Differences in values 

obtained reflect the effect of feeding high aT on storage of ROL derived 

from the daily feeding of g-carotene. However, the question was whether 

or not high tissue concentrations of tocopherol, achieved by feeding 50 

mg otT daily for 28 days^ would produce any relevant functional changes 

in the small intestinal mucosal tissue. The main point of course was 

whether these functional changes, if any, were related to the g-carotene 

conversion process and hence would help explain the vast differences 

obtained in hepatic ROL storage. Hence, only functional changes rele­

vant to the conversion of g-carotene to vitamin A were investigated in 

Experiment IB. 

The last oral dose of aT and g—carotene was given about 24 hrs 

14 
prior to the intraduodenal injection of C-g-carotene. One hour after 

the injection, the proximal 60 cm of the small intestine was extracted 

Supplementary data from our laboratory indicate a five-fold 
increase in aT from the GIT of rats fed 50 mg aT compared to 
controls. 
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into hexane and separated, on a deactivated alumina column, into the 

following fractions: 

1. B-carotene - uncoverted substrate 

2. Retinyl esters - product 

3. Retinol - product 

4. Polar fractions - unidentified breakdown materials and polar 

metabolites, including retinoic acid. 

Radioactivity recovered from each fraction was expressed as a percentage 

of total radioactivity recovered from the small intestine. This mini­

mized errors due to reflux of materials from the duodenum into the 

stomach. 

Results from experiment IB are shown in Table 7. In rats fed 50 mg 

aT (50-aT) for 28 days, unconverted B-carotene amounted to 75 percent of 

total intestinal radioactivity recovered- This value was not signifi­

cantly different from that of controls, 73 percent. The retinyl ester 

fraction was significantly higher (P < 0.001) in the 50-aT group than in 

controls. The mean for the ROL fraction was somewhat increased in 

controls though statistically not significant. When mean radioactivity 

recovered from retinyl esters and ROL fractions were combined, the data 

showed no significant difference between the two otT treatments (Table 

7). Since the two fractions are indicative of B-carotene conversion, it 

appears that conversion was similar in both treatment groups though 

distribution between the free and esterified fraction varied. These 

^Aqueous layer contained insignificant amounts of radioactivity. 
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Table 7. In vivo intestinal conversion of C-3-carotene to retinol and its metabolites following 
prefeeding rats 1 or 50 mg dl-a-tocopheryl acetate for 28 days^ (Experiment IB) 

Percent of Radioactivity Recovered 

, Retinol 
aT /Day Retinyl + Polar 

mg N 3-Carotene Esters Retinol Retinyl/Esters Fractions 

1  9  7 3 + 3 . 5 ^  1 0 + 0 . 7  1 0 + 1 . 9  2 0 + 1 . 9  7 + 1 . 6  

50 7 75 + 0.6 17 + 1.1*** 6 + 0.9 23 +0.7 2 + 0.4* 

^Rats were injected intraduodenally with approximately 10 pg ^^C-g-carotene and killed 1 hr 
later. 

^dl-a-tocopheryl acetate. 

^Mean + SEM. 

'"Significantly different (P < 0.05) from control. 

***Significantly different (P < 0.001) from control. 
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data suggest that daily feeding of 50 mg aT to rats for 28 days had no 

adverse effects on the capability of the intestine to synthesize ROL 

from 6—carotene. Table 7 also shows that polar fractions were signifi­

cantly lower (P < 0.05) in rats fed 50 mg aT than in controls. Since no 

attempt was made to establish the identity of compounds present in the 

polar fractions the data are difficult to interpret. It is possible 

that this fraction contains retinoic acid (Grain et al., 1967) and 

oxidation products of components from the other fractions (Olson, 1961). 

In vitro study (Experiment 2) 

Short term in vivo studies from experiment IB, just discussed, led 

to the conclusion that high tissue concentrations of tocopherol do not 

adversely affect the capability of the intestinal mucosa to convert 6-

carotene to vitamin A. To confirm this hypothesis, crude g-carotene-

15,l5*-dioxygenase preparations were made from the mucosal scrapings of 

rats that had been fed either 1 or 50 mg al daily for 28 days. The 

14 
enzyme preparations were used to incubate C-g-carotene. As in Experi­

ment 1, the last oral dose of aT was given 24 hrs prior to killing the 

rats. Incubation mixtures were extracted into hexane and separated into 

the following fractions: 

1. g-carotene - unconverted substrate. 

2. Retinyl Esters - artefact? 

3. Retinal - main product 

4. Polar fractions - breakdown materials, retinoic acid. 
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Recovery of C in each fraction was expressed as a percentage of 

the total. Percent radioactivity recovered from g-carotene and the main 

product, retinal, were similar whether the enzyme preparations came from 

rats prefed 50 mg aT or from controls (Table 8). Statistical analysis 

of the data showed no significant differences between groups. These 

results support the findings from experiment IB. 

14 
Table 8. In vitro conversion of C-g-carotene to retinol metabolites 

by mucosal homogenates from rats prefed 1 or 50 mg dl-a-
tocopheryl acetate for 28 days (Experiment 2) 

Percent of Radioactivity Recovered 

aT/Day Retinyl Polar 
mg N Carotene Esters Retinal Fractions 

1  7  8 7 + 1 . 0 ^  1 + 0 . 2  7 + 0 . 9  5 + 0 . 2  

5 0  7  8 5 + 2 . 2  1 + 0 . 3  1 0 + 2 . 0  4 + 0 . 3  

• *Mean + S EM. 

The retinyl ester fraction in Experiment 2 was treated as an arte-

14 
fact. Blank incubations of C-S-carotene yielded about 1 percent of 

activity in the retinyl ester fraction. Polar fractions in the blank 

incubations amounted to about 2 percent of total activity. Hence, 

part of the polar fractions in Table 8 are considered to be artefacts 

or due to the oxidative degradation of g-carotene while the rest might 

possibly be due to oxidation of product during extraction and chromato­

graphic procedure. Since the enzyme preparation was not purified, it is 

possible that small amounts of the RAL formed could have been converted 
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to ROL by other mucosal enzymes present in the preparation. Any ROL 

present would end up in the polar fractions under the procedure used 

for separating the fractions. Also, some of the RAL could have been 

converted to retinoic acid according to Grain et al. (1967). This 

metabolite would also contribute to the fraction designated as polar. 

The overall yield of RAL in Experiment 2 was low compared to 

results from Goodman et al. (1966). They obtained yields as high as 54 

percent RAL as compared with 7 and 10 percent in the present experiment. 

Part of the difference in results between the two laboratories is due to 

variations in length of incubation periods. Goodman and coworkers 

incubated for 60 minutes compared to 40 minutes used in Experiment 2. 

Different strains of rats were also used by Goodman and his group. 

Another contributing factor could be lack of technical expertise in our 

laboratory resulting in loss of enzyme activity during enzyme prepara­

tion. 

Effect of feeding 50 mg aT on utilization of B-carotene (Experiment 3) 

The finding that high tissue levels of tocopherol did not impair 

the ability of the rat's mucosa to convert B-carotene to ROL led to the 

exploration of other possibilities. The purpose of the next experiment 

was to determine whether the rate of catabolism of ROL was enhanced by 

feeding 50 mg aT- The results were essentially negative. 

Young vitamin A-depleted rats which had been repleted with 75 yg g-

carotene plus 1 or 50 mg aT daily for 28 days were fasted overnight. 

Following intubation with 20 yg 6—carotene, they were given small 

amounts of the basal diet and then placed in metabolism cages. Urine 



www.manaraa.com

51 

and feces were collected during the next 14 hours. The entire gastro­

intestinal tract (GIT) was removed and separated into two portions. The 

caudal portion (from colon to anus) was combined with feces and extracted 

together. Liver, kidneys, urine, and serum were all appropriately treated 

for estimation of radioactivity. Total blood volume was estimated from 

the animals' body weight based on the assumption that blood constitutes 

6 percent of the rat's body weight. Total serum volume was estimated 

from total blood volume based on a hematocrit value of 46 percent. 

Radioactivity determined from an aliquot of serum was extrapolated to 

activity in total serum volume. 

Mean total radioactivity recovered, expressed as a percent of dose 

was only 29 and 21 percent in controls and rats fed excess aT, respec­

tively (Table 9). Considerable variations within groups led to rather 

high standard errors of the mean. The high degree of variation within 

groups coupled with a mean total recovery of less than a third of the 

dose made it difficult to interpret the data with confidence. 

Nearly one third of the radioactivity recovered was from liver in 

both groups of rats (Table 9). Expressed on the basis of dose (Table 

10) there was a slight increase in radioactivity stored in the liver in 

control rats compared to the 50-aT group but the increase was statistic­

ally not significant. This result was unexpected since hepatic ROL data 

from the feeding studies (Table 6) led to an expectation of depressed 

storage in the excess aT group. The findings were, however, consistent 

with data from Experiments IB and 2. Results from both Experiments IB 

and 2 indicated that synthesis of ROL and its metabolites from S-carotene 
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Table 9. Mean percent radioactivity recovered from various tissues and fluids of rats intubated 
with l^C-3-carotene and killed 14 hrs later (Experiment 3B) 

% of Label Recovered In 

Î ÏÏ 
aT Fed No. Days Total ^ Colon + 

mg N Fed Recovery Liver GIT Feces I + II Kidney Urine Serum 

1  9  2 8  2 9 + 8  3 1 + 5  1 6 + 3  3 4 + 6  5 0  3 + 1 .  1 0 + 2  5 + 1  

5 0  9  2 8  2 1 + 5  2 9 + 3  2 0  +  3  2 7  +  5  4 7  4 + 1  1 0 + 2  9  +  2 *  

^otT = dl-a-tocopheryl acetate. 

^Expressed as precent of dose. 

^Significantly different (F < 0.05) from control. 
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Table 10. Mean radioactivity as percent of dose recovered from various tissues and fluids of rats 
Intubated with l^C-g-carotene and killed 14 hrs later (Experiment 3B) 

% of Dose 

I II 
aT^ Fed No. Days Total Colon + 

mg N Fed Recovery Liver GIT Feces I + II Kidney Urine Serum 

1  9  2 8  2 9 + 8  7  +  . 7  6  +  2 . 2  1 3  +  5 . 1  1 8  1  +  . 2  2 + . 3  l + . l  

50 9 28 21 + 5 5 + .6 4 + .8 7 + 3.4 12 1 + .2 2 + .4 2 + .3* 

^dl-a-tocopheryl acetate. 

^Significantly different (P < 0.05) from control. 
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was not adversely affected by high content of tocopherol in tissues. 

Of the total radioactivity recovered, an average of 50 percent was 

contributed by the gastrointestinal tract and feces of control animals. 

For the 50-aT group, mean recovery from similar sources was 47 percent. 

This value compared favorably with the control value. These amounts, 

however, represented only 18 percent of the dose in the control animals 

and 12 percent of the dose in the 50-aT group (Table 10). Only 2 percent 

of the dose was recovered from urine of both groups within the 14 hour 

collection period. Surprisingly, radioactivity recovered from serum was 

higher in rats fed 50 mg aT than in controls. Values of total radio­

activity recovered in serum were 9 and 5 percent for the two groups, 

respectively (Table 9). This was the only statistically significant 

difference (P < 0.05) seen between treatments in Experiment 3. Since 

serum extracts were not separated into different fractions, it was 

impossible to tell whether the radioactivity recovered from serum was 

due to ROL, ROL metabolites, traces of g-carotene or a combination of 

these. 

Most of the activity recovered from the GIT was unconverted B-caro-

tene in the lower GIT and feces. When radioactivity recovered from 

urine was combined with that recovered from the GIT and feces, it became 

14 apparent that only 14 to 20 percent of the dose of C-g-carotene was 

accounted for by remnants from digestion and absorption or excretory 

products. Thus 80 to 86 percent: of the dose had disappeared but liver 

and serum could account for only a small portion of the loss. Since 

14 
the C-g-carotene was labelled in the 15,15' positions, some of the RAL 
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formed could have been coverted to retinoic acid and subsequently 

14 
decarboxylated, eliminating COg (Grain et al. 1967, DeLuca, 1979). 

Although retinoic acid has been shown to be one of the metabolites 

of ROL (Emerick et al., 1967), there is no conclusive evidence yet that 

the conversion of ROL to retinoic acid occurs on a large scale at 

physiological doses of ROL or its precursors in rats. 

It was expected that more radioactivity would be recovered from the 

fecal portion of extracts from rats fed 50 compared to 1 mg aT but this 

was not the case. 

No attempt is made here to carry out a serious analysis of the data 

or make comparisons to other work published. To do that would imply 

confidence in the data of Experiment 3. The author has serious reserva­

tions about the validity of the data due to the great variability within 

treatment groups, the unusually low recovery of radioactivity from the 

lower GIT and feces, and the overall low recovery of the dose. A care­

fully controlled and executed repetition of Experiment 3 accompanied by 

CO^ trapping during the 14 hour collection period might have provided 

additional information to help with interpretation. However, since 

there was no indication that a repeat would yield data which would help 

elucidate the overall problem of carotene-tocopherol interaction, this 

experiment was not repeated. 
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Effects of Simultaneous Administration of High aT on the 

Short-Term Conversion of S-Carotene to Vitamin A In Vivo and In Vitro 

So far the data presented indicate that when g-carotene was fed to 

rats receiving high amounts of aX, hepatic deposits of ROL were severely 

depressed (Table 6). But short-term tests conducted in rats with high 

tissue levels of tocopherol showed no evidence of a depression of ROL 

synthesis from g-carotene. This was apparent both from the in vivo 

(Experiment IB, Table 7) and the in vitro studies (Experiment 2, Table 

8). It appeared that even over a 14 hour period, rats with high tissue 

levels of aT did not handle g-carotene differently from controls (Experi— 

ment 3B, Tables 9 and 10). The evidence from Table 6 was strong and 

corroborated previous findings (Park, 1975, Arnrich, 1978). Data in 

Table 6 resulted from simultaneous feeding of B-carotene and aT daily 

(Table 4). Therefore, Experiments IB and 2 were repeated as Experiments 

4 and 5, respectively, but this time g-carotene and aT were injected or 

incubated together. 

In vivo study - Experiment 4 

Experiments 4 and 5 were designed to investigate the effects of 

simultaneous administration of aT and g-carotene on the g-carotene con­

version process. Summaries of procedures for experiments 4 and 5 are 

found in Table 4. 

14 
Intestinal extracts of rats injected with C-g-carotene in the 

presence of 10 mg aT (excess aT) had 86 percent unconverted g-carotene 

compared to 73 percent for controls (Table 11, P< 0.001). With excess 
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14 
Table 11. In vivo intestinal conversion of C-B-carotene to retinol metabolites following 

intraduodenal Injection of C-g-carotene and 0.2 or 10 mg dl-a-tocopheryl acetate 
(Experiment 4) 

% of Radioactivity Recovered 

aT^ 
injected Retinyl Retinol + Polar 

mg N Carotene Esters Retinol Retinyl Esters Fractions 

0.2 8 73 + 3.3^ 18 +3.1 7 + 0.3 25 +3.3 2 + 0.2 

10.0 18 86 + 0.9*** 8 + 0.8*** 4 + 0.3*** 13 + 0.9*** 2+0.1 

®aT = dl-a-tocopheryl acetate. 

^Mean + SEM. 

Significantly different (P < 0.001) from control. 
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aT the retinyl ester fraction contained only 8 percent of the total 

radioactivity recovered from the intestine. This value was signifi­

cantly lower (P < 0.001) than that of 18 percent for controls. Similar­

ly, with excess aT, 4 percent of total radioactivity was recovered from 

the small intestine in the ROL fraction compared with a recovery of 7 

percent for control rats. When the two principal fractions (i.e. 

retinyl esters and ROL) were combined, control rats had converted twice 

as much g-carotene to products as had the excess aT group. These find­

ings were qualitatively consistent with those related to hepatic ROL 

storage (Table 6) but inconsistent with data obtained in Experiment IB 

(Table 7). These results gave credence to the speculation that the 

inhibitory effect of high aT on g-carotene conversion is most pronounced 

when g-carotene and aT are administered simultaneously. 

In vitro study - Experiment 5 

Since results from Experiment 4 had indicated that simultaneous 

administration of excess aT was detrimental to the g-carotene conversion 

process, it was important to confirm these findings in vitro. It was 

crucial to use a homogeneous source of enzyme to eliminate errors due to 

variations in enzyme activity from different rats. Therefore, tissues 

from two groups of 4 rats each were pooled for the enzyme preparations. 

Again unconverted g-carotene recovered was higher in samples 

treated with excess aT compared to controls (Table 12, P < 0.001). 

14 
Eighty-six percent of the total C recovered was unconverted g-carotene 

in the samples containing excess aT compared to 78 percent in controls. 
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Table 12. Effect of excess a-tocopheryl acetate on the In vitro conversion of ^^C-B-carotene to 
retinol metabolites by mucosal homogenates from rats (Experiment 5) 

Percent of Total DPM Recovered 
aT/Incubation 

mixture 
mg N Carotene Retinyl Ester Retinal Polar Fractions 

0.02 8 78 + 1.6* 2 + 0.3 15 0.8 3 + 0.3 

1.00 9 86 + 0.6*** 1 + 0.1 11 + 0.4*** 2 + 0.2*** 

^Mean + SEM. 

***Signiflcantly different (P < 0.001) from control. 
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14 
The formation of RAL, the main product of incubation of C-B-caro-

tene, was depressed by 27 percent in excess aT samples compared to con­

trol samples. Here again the simultaneous presence of 6-carotene with 

excess aT resulted in a significant depression of the conversion of g-

carotene by RAL. 

14 
Recovery of C in retinyl esters and polar fractions was con­

sidered to be mostly the result of artefacts since blank incubations of 

14 
C-6-carotene without enzyme yielded 1 percent in each of these 2 

fractions. As mentioned earlier during the discussion of Experiment 2, 

14 
some of the C recovered from polar fractions could be due to ROL and 

possibly retinoic acid. In addition, any antioxidant activity of 0.02 

mg aT would be considerably less than that of 1 mg aT under identical 

circumstances. Therefore, the significant decrease in polar fractions 

seen with the excess aT samples (Table 12) may be the result of a combi­

nation of factors. 

The results of experiments 4 and 5 support qualitatively, conclu­

sions based on hepatic ROL storage data in Table 6, but not in the same 

orders of magnitude. Rats fed 50 mg aT daily for 28 or 56 days had 

hepatic ROL deposits which were ̂  11 percent of controls (Table 6). In 

contrast, data in Table 11 suggest a 50 percent reduction in 6-carotene 

conversion while in Experiment 5 (Table 12) the reduction in activity 

was only 27 percent with relatively large amounts of aT in the medium. 

In vivo experiments in our experimental protocol (Experiments IB 

and 4) involve the formation of ROL and its derivatives over a rela­

tively short period of time. The in vivo studies cover a short part of 
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a total process involving micelle formation, uptake of B-carotene into 

the mucosal cell, cleavage, reduction of RAL ro ROL and esterification 

of ROL- The in vitro studies (Experiment 5) on the other hand, eliminate 

some of the above steps and focus mainly on micelle formation and cleav­

age of 6-carotene to RAL. Different kinetics might be operating during 

the various stages of the conversion process. The differences seen in 

Experiment 4 are probably due to a change in micelles brought about by 

the high concentration of aT used. We postulate that aT, when present 

in large amounts, influences the size of micelles formed, producing 

larger micelles and leading to a reduction in relative total micellar 

surface, and hence to a reduction in efficiency of micelles to carry g-

carotene to the enzyme. This would also slow down the entry of B-caro­

tene into the mucosal cell. In the in vitro situation in Experiment 5, 

however, the absorption factor is absent, hence the aT effect is less 

prominent. 

It is proposed that data from Experiments 5 and especially 4 are 

more representative of the magnitude of inhibition of ROL synthesis from 

g-carotene than data based on hepatic ROL storage (Experiments lA, 3A 

and 6) for the following reasons: 

1) Hepatic ROL deposited over the 28 or 56 day feeding period 

represent only part of the total amount of ROL synthesized 

from S—carotene supplements since a certain amount must have 

been used in daily metabolism for growth and maintenance. 

There is evidence from our animal model to suggest that 

growing rats fed 1 or 50 mg aT daily use similar amounts 
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(=10 ng/day) of ROL for daily metabolism and growth (Keller, 

1979).^ The amount of ROL stored in liver is thus over and 

above that which is used for daily metabolism. In effect, 

hepatic storage data exaggerate the differences between groups 

of rats fed either 1 or 50 mg aT, since amounts used in 

metabolism are not accounted for. For example, based on the 

assumption that rats in this model used an average of 10 yg 

ROL daily, a calculated total of 280 yg ROL would be used by 

each rat over a 28-day period. Adding this quantity to amounts 

of ROL actually determined from the liver (Table 6) would 

narrow the gap that exists between the group fed 50 mg aT and 

controls. Estimates of mean ROL formed by each group of rats 

over a 28-day feeding period then shows 372 yg for control vs. 

284 yg ROL for the 50 aT group in Experiment lA. Similar 

extrapolations in Experiment 3A show an estimated mean ROL 

formed to be 386 vs. 287 ug for the two treatment groups, 

respectively. Based on these estimates, rats fed 50 mg aT now 

show only a 25 percent decrease in their ability to convert 6-

carotene to ROL in both Experiments lA and 3A. 

2) Furthermore, in extrapolating data collected over a one-hour 

period (Experiment 4) to a 24 hour experimental period, the 

assumption is made that conversion of g-carotene to RAL occurs 

^Keller, J. A., Department of Food and Nutrition, Iowa State 
University, Ames, Iowa. Personal communication, 1979. 
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at a uniform rate and that observations made within one hour 

are representative of occurrences over the entire 24-hour 

period. These assumptions may not be valid hence quantitative 

differences in conversion between the 28-day feeding study and 

a 1-hour metabolic period can be expected. Yet qualitatively 

the two sets of data compliment each other. 

Conditions influencing the in vivo conversion of g-carotene into 

vitamin A have been extensively reviewed by Olson (1961). He noted that 

the concentration of vitamin A derivatives in the intestinal wall 

14 
reached a peak at one hour after injection of C-g-carotene suspensions 

into ligated small intestinal loops. Liver radioactivity, on the other 

hand, increased more slowly and reached a maximum in 3 to 5 hours. He 

found relatively small amounts of g-carotene, retinal and retinol in the 

intestinal wall compared to retinyl esters present. This led to the 

conclusion that the uptake of g-carotene might be the rate limiting step 

in the over-all reaction. The requirement for bile appeared to be not 

solely related to the emulsifying qualities of bile since in the presence 

of a synthetic emulsifying agent (Tween 20), bile duct-ligated rats 

failed to convert appreciable amounts of g-carotene into vitamin A prod­

ucts. There also seemed to be a feedback inhibition since the presence 

of 2 mg ROL or RAL in a mixture containing 20 yg g-carotene severely 

depressed the formation of vitamin A products from the g-carotene by 

ligated small intestinal loops. 

The g-carotene conversion process has also been studied in vitro by 

several investigators including Goodman et al. (1966a), Olson and Hayaishi 
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(1965), and Goodman et al. (1967). From these authors the general 

characteristics and requirements of g-carotene 15,15'-dioxygenase have 

been determined. Goodman et al. (1967) estimated that the enzyme 

required an appropriate combination of detergent plus lipid in order to 

function at maximum capacity in vitro. Contrary to Olson's finding in 

the in vivo system, Goodman et al. (1967) found that certain synthetic 

detergents were adequate substitutes for bile salts in the in vitro 

system. These investigators also noted that addition of 15 or 250 yg a-

tocopherol in 25 yl acetone had no effect on the yield of RAL in an 

in vitro incubation of 6-carotene plus enzyme. It should be pointed out 

that the highest amount of tocopherol used by Goodman et al. (1967) 

amounted to only 25 percent of the high level of aT used in Experiment 

5. There are other differences between the two experiments. Goodman 

and coworkers (1967) added tocopherol in acetone separately to the 

incubation medium; in Experiment 5, aX was combined with the ^^C-g-

carotene in the carrier before being introduced into the incubation 

medium. Thus, compared to the present experiments, amounts of tocopher­

ol used by Goodman et al. (1967) were smaller and mode of administration 

was different. Therefore, the differences obtained in Experiment 5 

compared to findings of Goodman et al. (1967) with respect to tocopherol 

would be expected. 

Summary 

In summary, data from the experiments reported here suggest that: 

1) Hepatic ROL depression cannot be accounted for by growth 

differences between treatment groups. 
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2) The inhibition of the conversion process is not as great as 

hepatic ROL deposits would suggest. 

3) High tissue levels of tocopherol do not seem to inhibit the 

conversion of B-carotene. 

4) Excess aT must be simultaneously present with 6-carotene in 

the digesta for this inhibition to occur. 

These experiments may be useful in rekindling interest in the as 

yet unanswered questions involving the actual mechanisms of the con­

version of B-carotene to RAL and consequently to ROL. In addition, even 

though caution must be taken in extrapolating results of animal research 

to humans, there may be some implications of interest to human nutrition 

from these data. For example, the vitamin A status of pure vegans, who 

might consume megadoses of vitamin E without concomitant intakes of 

preformed vitamin A, may need to be checked periodically. It might also 

be important to monitor the vitamin A status of patients who have to 

take therapeutic doses of vitamin E or at least to make such patients 

aware of the need to obtain some preformed vitamin A in their diets. 
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SUMMARY AND CONCLUSIONS 

Effects of feeding excess a-tocopherol (aT) daily were assessed by 

measuring: 

1) Growth (Experiments 1, 3 and 6), 

2) Hepatic retinol (ROL) storage from B-carotene over extended 

feeding periods (Experiments lA, 3A and 6), 

3) The ability of the small intestinal mucosa of rats prefed 

high aT to convert g-carotene to vitamin A products (Experi­

ments IB and 2), 

4) The utilization of B-carotene over a 14-hour metabolism period 

(Experiment 3B). 

In another set of experiments, the effects of simultaneous adminis­

tration of excess aT and B-carotene were assessed on the B-carotene con­

version process (Experiments 4 and 5). 

In Experiments 1, 3 and 6, weanling rats were fed vitamin A-free 

diets for 7 days. They were repleted with supplements of g-carotene in 

the presence of either 1 or 50 mg aT daily for 28 or 56 days. Growth 

was measured weekly. The extent of g-carotene conversion in the intes­

tinal mucosa was assessed by measuring formation of metabolic products 

14 
from C-g-carotene following intraduodenal injections (Experiment IB) 

14 
or by in vitro incubations of C-g-carotene with crude enzyme prepara­

tions (Experiment 2). In Experiment 3B, vitamin A depleted rats repleted 

with g-carotene were intubated with ^^C-B-carotene and metabolites and 

excretory products were checked within 14 hours. Hepatic ROL was 

determined after the rats were killed (Experiments lA, 3A and 6). 
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In Experiments 4 and 5, rats weighing approximately 250 g each and with 

adequate hepatic ROL stores were obtained from the stock colony. The 

effects of high aT on the B-carotene conversion process were assessed by 

intraduodenal injections or in vitro incubations of g-carotene mixtures 

containing excess aT. 

Growth 

The daily consumption of excessive amounts of aT did not have any 

adverse effect on the growth rate of rats over feeding periods up to 56 

days. Hence, any differences observed in other parameters measured 

could not be attributed to differences in body size between the two 

treatments. 

Hepatic Retinol 

Hepatic deposition of ROL was almost completely abolished when rats 

received daily supplements of 50 mg aT together with g-carotene as their 

sole source of vitamin A (Experiments lA and 3A). The feeding period 

was extended from 28 to 56 days, yet the inhibitory effect of excess aT 

on hepatic ROL deposition persisted (Experiment 6). When hepatic ROL 

deposits were combined with an estimated use of ROL for metabolic needs, 

the apparent severity of inhibition became greatly reduced. 

High Tissue Tocopherol and 6-Carotene Conversion 

Intraduodenally injected g-carotene was converted to vitamin A 

products equally well whether rats had been prefed with 1 or 50 mg aT 

(Experiment IB). Similarly crude preparations of S-carotene-15,15*-

dioxygenase from rats prefed 50 mg aT daily for 28 days were as active 
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as enzyme preparations from control rats (Experiment 2). Therefore, 

it was concluded that high tissue content of tocopherol produced by pre-

feeding large amounts of aT did not inhibit the g-carotene conversion 

process, at least not in the 40-60 minutes of observation used in Experi­

ments IB and 2. 

In experiment 3B, excretion of radioactivity via feces or urine was 

not different between the two txT treatments. Hepatic radioactivity was 

slightly higher with 1 versus 50 mg aT but the difference was not signifi­

cant. It was concluded that utilization of 6-carotene by both treatment 

groups was essentially the same. 

Simultaneous Presence of Excess Tocopherol and 6-Carotene Conversion 

When g-carotene was injected simultaneously with aT into the 

duodenum, the formation of product from the GIT of rats injected with 

excess aT was reduced by 50 percent (Experiment 4). In a subsequent in 

vitro experiment the presence of excess aT with S-carotene in the incuba­

tion medium led to a 25 percent decrease in the formation of RAL, the 

major metabolic product (Experiment 5). Thus, in order for a significant 

inhibition of the conversion of g-carotene to occur under these experi­

mental conditions, aT must be simultaneously present with g-carotene. 

The magnitude of reduction of g-carotene conversion in the short term 

experiments were compared with hepatic storage data. 

In Experiments lA, 3A and 6, total hepatic ROL of rats fed excess 

aT constituted only 4-11 percent of control values. However, in Experi­

ments 5 and 4, the observed inhibition of g-carotene conversion by 

excess aT was only 25 and 50 percent, respectively. Supplementary data 
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from our laboratory have indicated that both groups of rats in this 

experimental model used similar amounts of ROL for daily metabolism. 

Hepatic ROL fails to account for ROL already used for growth and mainte­

nance. Therefore, it was concluded that measuring hepatic ROL alone, 

resulted in an exagerated assessment of the magnitude of the inhibition 

of 6-carotene conversion by excess aT. 

Since in previous studies from this laboratory, retinyl acetate 

intakes had not been affected by excess cxT, it was concluded that aT 

might affect g-carotene conversion processes prior to the formation of 

ROL. The exact manner of the interference may not be known until the 

details of physical and biochemical steps for conversion of 6-carotene 

to vitamin A are more fully understood. It is known that g-carotene-

15,15'-dioxygenase requires molecular oxygen for maximum activity, hence 

excess a-tocopherol may reduce enzyme activity by competing for molecular 

oxygen. On the other hand, alpha-tocopherol may not have a chemical 

effect on the 6-carotene conversion process but rather a purely physical 

effect, possibly through altering the physical characteristics of micelle 

formation, thus reducing the accessibility of 8-carotene to the enzyme 

system. 
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APPENDIX 

Hepatic g-Carotene 

During the extraction of liver in Experiment 3 it was repeatedly 

noted that liver extracts from the 50-aT group were visibly more yellow 

than extracts from control rats. A pool of extracts from several rats 

was chromatographed on deactivated alumina and the hexane fraction from 

the column was scanned in a spectrophotometer.^ A characteristic g-

carotene spectrum was obtained (Fig. 3). Attempts to quantitate the 6-

carotene proved unreliable. The best estimates were about 0.5 pg g-

carotene per liver. The definite presence of significant amounts of 6-

carotene in extracts of livers from the 50-aT group raised some inter­

esting speculations, such as: 

1) The absorption of 6-carotene was enhanced by excess aT. 

2) Gastrointestinal transit time was delayed by excess aT leading 

to a delay in the peak appearance of g-carotene in the liver. 

Effects of excess aT on g-carotene absorption, and peak appearance 

in serum and liver may provide new directions for future study. 

^Perkin Elmer, model 552. 
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Figure 3. Beta-carotene spectra 

A. Standard all-trans B-carotene. 

B. Liver extracts from 50-aT group in Experiment 3. 
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